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Experimental investigation on the mechanical
performance of helical ceramic springs
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A series of helical ceramic springs were manufactured from MgO partially stabilized
zirconia to investigate their mechanical properties. Nine springs were machined from
zirconia tubing, initially one inch in length, with a rectangular pitch of 16, 14, or 12 turns per
inch. An experimental apparatus that both supports and equalizes the applied loads on
springs was developed. The spring deflection versus applied load was measured using an
optical sight mounted on a micrometer. Deflection data on each spring were collected,
plotted and successfully modeled using Hooke’s Law. A more extensive model was used to
calculate the shear modulus of rigidity and shear stress. This model incorporates the spring
dimensions, pitch, applied load, and deflection and provides insight into the effects of the
materials of construction and manufacturing technique on the effective shear modulus of
spring. A specific manufacturing effect was observed in the initial deflection resulting from
the mass of the spring as the pitch was increased. C© 2003 Kluwer Academic Publishers

Notations

P Load applied to the spring (kg).
k Proportionality constant used in Hooke’s Law

(kg/mm).
f Resulting deflection based on application of load

(mm).
R Radius of the spring, measured from the central

axis of the spring to the center of the coil (mm).
n Number of active turns in the spring (number of

coils in a given length).
G Shear modulus.
a Dimension of the spring coil (half the width of

coil) (mm).
b Dimension of the spring coil (half the height of

coil) (mm).
D Diameter of the spring (mm).
Geff Effective shear modulus.
Gm Shear modulus as a function of the material.
Go Shear modulus as a function of the construction

method imposed.
m Temperature coefficient (determined from tabu-

lated data).
T Temperature of the material (◦C).
τ Shear stress (kg/mm2).
c Parameter describing spring dimensions (R/b).

1. Introduction
Few references on helical ceramic springs are avail-
able in literature. R. H. Rudolph (1961) reported on
helical ceramic springs manufactured from sintered
vitreous-bonded alumina [1]. The springs had rect-
angular helical grooves with diameters of 1.0 to 4.5

inches and wire cross-sections of 0.0625 to 0.25 inches.
The springs were determined to have the same bulk
properties as the material, alumina in their case, along
with unique elastic properties resulting from the man-
ufacturing process. The springs were believed to be
valuable in high-temperature applications such as fil-
ament supports in vacuum tubes and high temper-
ature relays [1]. Data on these springs were mea-
sured up to 1200◦F (649◦C); however, the author noted
that experimental springs had operated up to 2000◦F
(1094◦C).

As few references to ceramic springs exist contain-
ing only limited data, models that characterize ceramic
spring performance are not readily available. Therefore,
we will use modeling equations applicable to metallic
springs in an attempt to model the room temperature
behaviors of MgO partially stabilized zirconia helical
springs. This paper reports on the room temperature
data on a new class of zirconia ceramic spring, it suc-
cessfully applies Hooke’s Law to the results and ex-
pands the analysis using a more extensive model based
on Hooke’s Law.

2. Theoretical considerations
In general, springs with a high pitch and thin coils
will compress easier than springs with lower pitch and
thicker coils. Therefore, springs with the lowest pitch
and thickest coil will display the greatest resistance
to applied loads. For a spring to obey Hooke’s Law,
the deflection must vary linearly with the applied load.
Hooke’s Law is given as:

P = k f (1)
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Figure 1 Dimensions of a typical helical ceramic spring [2].

where P is the load applied, f is the deflection, and
k is the proportionality constant. A constant based on
Hooke’s Law that is used in spring design formulas is
the spring constant. The spring constant is a parameter
that determines the load a spring can support depending
on its dimensions.

Fig. 1 shows a drawing of a typical helical spring. The
named constants or variables in the figure are related to
spring dimensions that are used in further developments
below.

For a metallic spring of rectangular cross section,
the deflection f , can be determined using the shear
modulus G, and a modified equation based on Hooke’s
Law [3] is given by

f = 3πPR3n

8Gb4

1

a/b − 0.627[tan h(πb/2a) + 0.004]

(2)

where R is the radius of the spring, n is the number of
active turns of the spring, a and b are dimensions of the
spring as shown in Fig. 1. This equation was modified to
account for the construction of the spring. A. M. Wahl
(1930) lists an equation that is applicable to a spring
with square coils [5].

The equation is given by:

f = 44.5PR3n

Gb4
(3)

Equation 3 is applicable for springs with square wire
and pitch angles lesser than 12 degrees (A. M. Wahl,
1930), [5]. This equation was further developed for
springs with rectangular wires as shown in (2) by W.
C. Young [3]. Further reference to the pitch angles has
been made by C. J. Ancker, Jr. and J. N. Goodier [9],
which supports the results provided by W. Berry [4],
to be applicable for springs with small pitch angles
between 5 and 20 degrees. Table I provides the pitch
angles for the matrix of springs, in addition to the other
spring dimensions. Since all the pitch angles fall in the
above-mentioned range, we can safely conclude that

TABLE I Summary of spring dimensions

Turns Measured
per inch ID (mm) a (mm) b (mm) Radius (mm) pitch angle

12 10.77 1.50 0.50 12.27 5.87◦
12 12.34 1.12 0.53 13.46 5.87◦
12 12.93 0.94 0.53 13.87 5.87◦
14 10.77 1.50 0.36 12.27 5.74◦
14 12.34 1.05 0.41 13.40 5.74◦
14 12.93 0.94 0.41 13.87 5.74◦
16 10.77 1.47 0.27 12.27 5.54◦
16 12.34 1.12 0.30 13.40 5.54◦
16 12.93 0.97 0.32 13.87 5.54◦

Equation 2 is valid for the set of helical ceramic springs,
as shown in Fig. 2.

The shear modulus of rigidity, G, also known as tor-
sional modulus of elasticity is a determining factor in
spring design formulas, but it is not a true constant in
spring design. The shear modulus depends on the me-
chanical properties of the material being considered,
such as the orientation of the grain structure, chemical
composition, temperature differentials, and the manu-
facturing processes [1], and is only applicable if the ma-
terial obeys Hooke’s Law [6]. In the case of machined
ceramic springs, the shear modulus depends on the base
material, sintering components and theoretical density,
operating temperature and method of construction. This
can be expressed in the form of an equation as:

Geff = Gm + Gc (4)

where Geff is the effective shear modulus, Gm is the
shear modulus as a function of the material and Gc
is the shear modulus as a function of the construction
method imposed. The shear modulus as a function of
temperature can be determined by the equation,

Gm = Go(1 − mT) (5)

where Go is the shear modulus at 0◦C, T is the tempera-
ture of the material given in ◦C and m is the temperature
coefficient that can be determined from the tabulated
data. As the temperature of the material increases,
the value of the shear modulus typically decreases.
Inserting these results into Equation 2, we obtain,

f = 3πPR3n

8(Go(1 − mT) + Gc)b4

× 1

a/b − 0.627[tan h(πb/2a) + 0.004]
(6)

The shear modulus data are available for MgO par-
tially stabilized zirconia from Coor’s Ceramics and can
be used without further verification [7]. The value listed
by Coor’s Ceramics for the shear modulus of the mate-
rial, and consequently, the shear modulus at 0◦C, was
7672.5 kg/mm2. The other mechanical properties for
the material can be obtained at www.coorstek.com.
Since Geff is determined experimentally and the ther-
mal coefficient, m, is small, the results reported are at

3332



Figure 2 Ceramic springs arranged according to pitch and coil thickness.

the room temperature and the effects of temperature are
neglected in Equation 4. The only unknown parameter
in Equation 6 is Gc, the shear modulus as a function of
the construction method.

The shear stress in a coil is defined as the instanta-
neous applied shear load divided by the original cross
sectional area of the coil over which the load is applied
[7]. The equation for the shear stress of a spring of
rectangular cross section is given by:

τ = PR(3b + 1.8a)

8b2a2

(
1 + 1.2

c
+ 0.56

c2
+ 0.5

c3

)
(7)

and is used without further modification. In Equation 7,
the variables refer to the spring dimensions referenced
in Fig. 1. The formulas for shear stresses have also been
modified according to the spring dimensions and the
torque effects. The terms in the parenthesis represent
the curvature correction factor, which acknowledges
the effects of curvature and direct shear on stress [2].
Wahl, C.J Ancker, Jr. and J. N. Goodier [9] determined
the correction factor using derivations of Gohner [8].

3. Equipment and procedures
Machined Ceramics of Bowling Green, Kentucky, man-
ufactured the helical ceramic springs from MgO par-
tially stabilized zirconia tubing obtained from Coor’s
Ceramic Company, Boulder, Colorado. The designation
for this material by Coor’s is TTZ. The springs were
machined from zirconia tubing with an initial length of
25.4 mm. Tubings with three different wall thicknesses

were machined to make 12, 14 and 16 Turns per inch
springs. A matrix of nine springs was thus available to
characterize their mechanical properties. Fig. 2 shows
a picture of the matrix of nine springs. The outside
diameter of all the ceramic springs is 19 mm and the
additional dimensions of the spring are given in Table I.

To consistently and reproducibly apply loads and
measure the deflections on the ceramic springs, the ex-
perimental apparatus shown in Fig. 3 was set up.

A machined lava stone upper support was suspended
from a triple beam balance that was used to counter bal-
ance the mechanism, such that it imposed no load on
the spring prior to the application of calibrated weights.
The spring was positioned between the upper and lower
support to center the spring within the apparatus. Lava
stone was selected because of the possibility of the set
up being used for high temperature deflection measure-
ments. A right angle telescope with an alignment retic-
ule (cross hairs) was mounted on a three axis linear po-
sitioner. A micrometer positions each axis of the linear
positioner. Thus, the positioning and deflection mea-
surements were accurate to the width of the reticule in
the optical site measured at 0.0025 mm.

A basic measurement began after the system was
counterbalanced and the optical sight adjusted to the
reference position. Weight was added to the load sup-
port to cause the deflection. The calibrated loads were
accurate to 0.0001 kg. Once equilibrium was attained,
the micrometer on the vertical axis was adjusted to
again position the optical site at the reference position.
The change in the micrometer reading before and after
this adjustment provided a direct measure of the spring
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Figure 3 Schematic of spring loading apparatus.

deflection to within 0.0025 mm. This procedure was
repeated until the spring was at maximum deflection or
fully loaded.

4. Results and discussion
The plot of deflection for each spring tested as a func-
tion of applied load is shown in Fig. 4. As seen in the
figure, deflection versus load is a linear function for all
springs tested, thereby confirming Hooke’s Law.

As the pitch decreases, the deflection is decreased,
showing that the springs become stiffer. This is ex-
pected because the stiffness of the materials would be
the limiting factor in case of no turns per inch.

Figure 4 Deflection versus load applied.

The spring index is a dimensionless value that ratios
the diameter of the spring by its coil thickness. Using
the deflection data, a relationship between the spring
constant and the spring index was calculated. Fig. 5
shows the plot of spring constant versus spring index.

As the pitch increased, the slope of the equation used
to determine the spring constant decreased. Therefore,
springs with higher pitch were less able to resist the
same magnitude of the load applied than springs with
lower pitch. The average value for the spring constant,
based on the models we determined, was measured to
be 0.0489 kg/mm. The only available reference in lit-
erature to support the analysis for a helical ceramic
spring was by Rudolph, who reported a spring constant
of 0.0163 kg/mm for a 30 TPI spring with a diameter of
30.163 mm and a coil thickness of 3.175 mm [1]. Since

Figure 5 Spring constant versus spring index.
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Figure 6 Shear stress versus load applied.

Figure 7 Deflection versus load at increasing temperatures.

both the values for the spring constant are of the same
orders of magnitude, the equations developed for the
determination of spring constant can be concluded to
be applicable for the matrix of helical ceramic springs.

Since Hooke’s Law is applicable, the shear modu-
lus of rigidity and the shear stress can be calculated
from Equation 2. A linear relationship for the plot of
shear modulus versus spring index implies that the shear
modulus G decreases slightly with the increase in the
spring index. In other words, regardless of the pitch,
as the coil thickness increases, the value for the shear
modulus increases. This is consistent with the work of
R. H. Rudolph (1961). A linear fit of the data shows that
the shear modulus is not a true constant based on the
materials but rather contains both the material constants
and manufacturing elasticity as suggested by Rudolph.

Fig. 6 shows a plot of the shear stress using Equation 2
versus load. As the pitch and thickness increase, there
is a linear increase of the shear stress for the spring.
The high pitch springs have large deflections at small
loading and therefore do not develop much stress.

The deflection of the surrogate spring displayed lin-
ear relationship throughout the increasing tempera-
tures. The Fig. 7 shows a plot of deflection versus load at
varying temperatures. As a comparison, the deflection
of the spring was plotted as an exponential function

of the load applied. Results show that an applied ex-
ponential relationship between the deflection and the
load is visually identical to the applied linear relation-
ship. Both the plots appear linear suggesting that the
exponential relationship can be applied to the data, but
for developing a model, a linear equation would be ade-
quate. This data supports the hypothesis that the springs
made from zirconia ceramic stabilized with magnesium
oxide are capable of linear behavior at increasing tem-
peratures as the load begins to increase.

5. Conclusions
The ceramic springs behave very similarly to metal
springs at room temperatures. A preliminary testing of
a surrogate spring suggested that the ceramic springs
would also behave linearly at elevated temperatures.
Further testing of the experimental spring matrix is
needed to evaluate their performance at high temper-
atures. The reason for the use of MgO stabilized zirco-
nia is their ability to operate at high temperatures. This
property of MgO stabilized zirconia gives hope and
confidence for us to continue our experimental work
on ceramic springs at elevated temperatures. The de-
flection was determined to be linear, thereby affirming
that Hooke’s law was applicable to the ceramic springs
and the equations for the shear modulus and shear stress
are applicable. Based on these conclusions, a model for
determining the behavior of the springs could be pre-
sented based on their microstructure, macrostructure,
and the temperature at which they perform.
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